Image Modal
全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號(hào)

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考總復(fù)習(xí) > 高考知識(shí)點(diǎn) > 高考數(shù)學(xué)知識(shí)點(diǎn) > 高中數(shù)學(xué)最難的三章知識(shí)點(diǎn)

高中數(shù)學(xué)最難的三章知識(shí)點(diǎn)

來源:高三網(wǎng) 2021-11-29 23:16:49

  高中數(shù)學(xué)最難的三章是函數(shù)、數(shù)列和不等式、三角函數(shù)和平面向量。下面是這幾章知識(shí)點(diǎn)的內(nèi)容,快來看看吧。

  1高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)

  一、函數(shù)的定義域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被開方數(shù)大于等于零;

  3、對(duì)數(shù)的真數(shù)大于零;

  4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;

  5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

  6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

  二、函數(shù)的解析式的常用求法:

  1、定義法;

  2、換元法;

  3、待定系數(shù)法;

  4、函數(shù)方程法;

  5、參數(shù)法;

  6、配方法

  三、函數(shù)的值域的常用求法:

  1、換元法;

  2、配方法;

  3、判別式法;

  4、幾何法;

  5、不等式法;

  6、單調(diào)性法;

  7、直接法

  四、函數(shù)的最值的常用求法:

  1、配方法;

  2、換元法;

  3、不等式法;

  4、幾何法;

  5、單調(diào)性法

  五、函數(shù)單調(diào)性的常用結(jié)論:

  1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)。

  2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)。

  3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

  4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。

  5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

  六、函數(shù)奇偶性的常用結(jié)論:

  1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。

  2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

  3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。

  4、兩個(gè)函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個(gè)是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個(gè)函數(shù)都是奇函數(shù)時(shí),該復(fù)合函數(shù)是奇函數(shù)。

  5、若函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和。

  2高中數(shù)學(xué)數(shù)列和不等式知識(shí)點(diǎn)

  不等式的性質(zhì)

 、賹(duì)稱性

 、趥鬟f性

 、奂臃▎握{(diào)性,即同向不等式可加性

 、艹朔▎握{(diào)性

 、萃蛘挡坏仁娇沙诵

 、拚挡坏仁娇沙朔

 、哒挡坏仁娇砷_方

 、嗟箶(shù)法則

  注意事項(xiàng)

  1、符號(hào)

  不等式兩邊相加或相減同一個(gè)數(shù)或式子,不等號(hào)的方向不變。(移項(xiàng)要變號(hào))

  不等式兩邊相乘或相除同一個(gè)正數(shù),不等號(hào)的方向不變。(相當(dāng)系數(shù)化1,這是得正數(shù)才能使用)

  不等式兩邊乘或除以同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。(除或乘1個(gè)負(fù)數(shù)的時(shí)候要變號(hào))

  2、解集

  確定解集:

 、俦葍蓚(gè)值都大,就比大的還大(同大取大)

 、诒葍蓚(gè)值都小,就比小的還小(同小取小)

 、郾却蟮拇,比小的小,無解(大大小小取不了)

 、鼙刃〉拇螅却蟮男,有解在中間(小大大小取中間)

  三個(gè)或三個(gè)以上不等式組成的不等式組,可以類推。

  3、數(shù)軸法

  可以在數(shù)軸上確定解集:

  把每個(gè)不等式的解集在數(shù)軸上表示出來,數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集。有幾個(gè)就要幾個(gè)。

  證明方法

  1、比較法

  作差比較法:根據(jù)a-b>0?a>b,欲證a>b,只需證a-b>0

  作商比較法:根據(jù)a/b=1,

  當(dāng)b>0時(shí),得a>b,

  當(dāng)b>0時(shí),欲證a>b,只需證a/b>1,

  當(dāng)b<0時(shí),得a

  2、綜合法

  由因?qū)Ч? 證明不等式時(shí),從已知的'不等式及題設(shè)條件出發(fā),運(yùn)用不等式性質(zhì)及適當(dāng)變形推導(dǎo)出要證明的不等式. 合法又叫順推證法或因?qū)Чā?br />
  3、分析法

  執(zhí)果索因. 證明不等式時(shí),從待證命題出發(fā),尋找使其成立的充分條件. 由于”分析法“證題書寫不是太方便,所以有時(shí)我們可以利用分析法尋找證題的途徑,然后用”綜合法“進(jìn)行表述。

  4、放縮法

  將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)到證題目的,已知A

  5、數(shù)學(xué)歸納法

  證明與自然數(shù)n有關(guān)的不等式時(shí),可用數(shù)學(xué)歸納法證之。

  用數(shù)學(xué)歸納法證明不等式,要注意兩步一結(jié)論。

  在證明第二步時(shí),一般多用到比較法、放縮法和分析法。

  6、反證法

  證明不等式時(shí),首先假設(shè)要證明的命題的反面成立,把它作為條件和其他條件結(jié)合在一起,利用已知定義、定理、公理等基本原理逐步推證出一個(gè)與命題的條件或已證明的定理或公認(rèn)的簡單事實(shí)相矛盾的結(jié)論,以此說明原假設(shè)的結(jié)論不成立,從而肯定原命題的結(jié)論成立的方法稱為反證法。

  7、換元法

  換元的目的就是減少不等式中變量的個(gè)數(shù),以使問題化難為易,化繁為簡,常用的換元有三角換元和代數(shù)換元。

  8、構(gòu)造法

  通過構(gòu)造函數(shù)、圖形、方程、數(shù)列、向量等來證明不等式。

  3高中數(shù)學(xué)三角函數(shù)和平面向量知識(shí)點(diǎn)

  一、定比分點(diǎn)

  定比分點(diǎn)公式(向量P1P=λ向量PP2)

  設(shè)P1、P2是直線上的兩點(diǎn),P是l上不同于P1、P2的任意一點(diǎn)。則存在一個(gè)實(shí)數(shù)λ,使向量P1P=λ向量PP2,λ叫做點(diǎn)P分有向線段P1P2所成的比。

  若P1(x1,y1),P2(x2,y2),P(x,y),則有

  OP=(OP1+λOP2)(1+λ);(定比分點(diǎn)向量公式)

  x=(x1+λx2)/(1+λ),

  y=(y1+λy2)/(1+λ)。(定比分點(diǎn)坐標(biāo)公式)

  我們把上面的式子叫做有向線段P1P2的定比分點(diǎn)公式。

  二、三點(diǎn)共線定理

  若OC=λOA+μOB,且λ+μ=1,則A、B、C三點(diǎn)共線。

  三、三角形重心判斷式

  在△ABC中,若GA+GB+GC=O,則G為△ABC的重心。

  四、向量共線的重要條件

  若b≠0,則a//b的重要條件是存在唯一實(shí)數(shù)λ,使a=λb。

  a//b的重要條件是xy—xy=0。

  零向量0平行于任何向量。

  五、向量垂直的充要條件

  a⊥b的充要條件是ab=0。

  a⊥b的充要條件是xx+yy=0。

  零向量0垂直于任何向量。

  設(shè)a=(x,y),b=(x,y)。

  六、向量的運(yùn)算

  1、向量的加法

  向量的加法滿足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(x+x,y+y)。

  a+0=0+a=a。

  向量加法的運(yùn)算律:

  交換律:a+b=b+a;

  結(jié)合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=—b,b=—a,a+b=0。0的反向量為0

  AB—AC=CB。即“共同起點(diǎn),指向被減”

  a=(x,y) b=(x,y) 則a—b=(x—x,y—y)。

  4、數(shù)乘向量

  實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣∣a∣。

  當(dāng)λ>0時(shí),λa與a同方向;

  當(dāng)λ<0時(shí),λa與a反方向;

  當(dāng)λ=0時(shí),λa=0,方向任意。

  當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

  當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

  當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的.∣λ∣倍。

  5、數(shù)與向量的乘法滿足下面的運(yùn)算律

  結(jié)合律:(λa)b=λ(ab)=(aλb)。

  向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa。

  數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb。

  數(shù)乘向量的消去律:

 、偃绻麑(shí)數(shù)λ≠0且λa=λb,那么a=b。

  ②如果a≠0且λa=μa,那么λ=μ。

  6、向量的的數(shù)量積

  定義:已知兩個(gè)非零向量a,b。作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉并規(guī)定0≤〈a,b〉≤π

  定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作ab。若a、b不共線,則ab=|a||b|cos〈a,b〉;若a、b共線,則ab=+—∣a∣∣b∣。

  向量的數(shù)量積的坐標(biāo)表示:ab=xx+yy。

  7、向量的數(shù)量積的運(yùn)算律

  ab=ba(交換律);

 。λa)b=λ(ab)(關(guān)于數(shù)乘法的結(jié)合律);

 。╝+b)c=ac+bc(分配律);

  向量的數(shù)量積的性質(zhì)

  aa=|a|的平方。

  a⊥b〈=〉ab=0。

  |ab|≤|a||b|。

  8、向量的數(shù)量積與實(shí)數(shù)運(yùn)算的主要不同點(diǎn)

  8.1向量的數(shù)量積不滿足結(jié)合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。

  8.2向量的數(shù)量積不滿足消去律,即:由ab=ac(a≠0),推不出b=c。

  8.3|ab|≠|a||b|

  8.4由a|=|b|,推不出a=b或a=—b。

  七、向量的向量積

  1、定義:兩個(gè)向量a和b的向量積(外積、叉積)是一個(gè)向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個(gè)次序構(gòu)成右手系。若a、b共線,則a×b=0。

  2、向量的向量積性質(zhì):

  ∣a×b∣是以a和b為邊的平行四邊形面積。

  a×a=0。

  a‖b〈=〉a×b=0。

  3、向量的向量積運(yùn)算律

  a×b=—b×a;

  (λa)×b=λ(a×b)=a×(λb);

 。╝+b)×c=a×c+b×c。

  注:向量沒有除法,“向量AB/向量CD”是沒有意義的。

  4、向量的三角形不等式

  1、∣∣a∣—∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

 、佼(dāng)且僅當(dāng)a、b反向時(shí),左邊取等號(hào);

 、诋(dāng)且僅當(dāng)a、b同向時(shí),右邊取等號(hào)。

  2、∣∣a∣—∣b∣∣≤∣a—b∣≤∣a∣+∣b∣。

 、佼(dāng)且僅當(dāng)a、b同向時(shí),左邊取等號(hào);

 、诋(dāng)且僅當(dāng)a、b反向時(shí),右邊取等號(hào)。

  相關(guān)推薦:


  高考數(shù)學(xué)知識(shí)點(diǎn)匯總


  什么是合數(shù)?性質(zhì)是

 

最新高考資訊、高考政策、考前準(zhǔn)備、志愿填報(bào)、錄取分?jǐn)?shù)線等

高考時(shí)間線的全部重要節(jié)點(diǎn)

盡在"高考網(wǎng)"微信公眾號(hào)

收藏

高考院校庫(挑大學(xué)·選專業(yè),一步到位。

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢

京ICP備10033062號(hào)-2 北京市公安局海淀分局備案編號(hào):1101081950

違法和不良信息舉報(bào)電話:010-56762110     舉報(bào)郵箱:wzjubao@tal.com

高考網(wǎng)版權(quán)所有 Copyright © 2005-2022 m.revolutshibainupartnership.com . All Rights Reserved