Image Modal
全國(guó)

熱門城市 | 全國(guó) 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號(hào)

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁(yè) > 高考總復(fù)習(xí) > 高考知識(shí)點(diǎn) > 高考語(yǔ)文知識(shí)點(diǎn) > 2025年高考語(yǔ)文復(fù)數(shù)的萌芽、形成與發(fā)展

2025年高考語(yǔ)文復(fù)數(shù)的萌芽、形成與發(fā)展

來(lái)源:網(wǎng)絡(luò)整理 2024-11-13 16:58:06

  我們知道,在實(shí)數(shù)范圍內(nèi),解方程是無(wú)能為力的,只有把實(shí)數(shù)集擴(kuò)充到復(fù)數(shù)集才能解決。對(duì)于復(fù)數(shù)a+bi(a、b都是實(shí)數(shù))來(lái)說(shuō),當(dāng)b=0時(shí),就是實(shí)數(shù);當(dāng)b≠0時(shí)叫虛數(shù),當(dāng)a=0,b≠0時(shí),叫做純虛數(shù)。可是,歷史上引進(jìn)虛數(shù),把實(shí)數(shù)集擴(kuò)充到復(fù)數(shù)集可不是件容易的事,那么,歷史上是如何引進(jìn)虛數(shù)的呢?

  16世紀(jì)意大利米蘭學(xué)者卡當(dāng)(1501—1576)在1545年發(fā)表的《重要的藝術(shù)》一書(shū)中,公布了三次方程的一般解法,被后人稱之為“卡當(dāng)公式”。他是第一個(gè)把負(fù)數(shù)的平方根寫到公式中的數(shù)學(xué)家,并且在討論是否可能把10分成兩部分,使它們的乘積等于40時(shí),他把答案寫成=40,盡管他認(rèn)為和這兩個(gè)表示式是沒(méi)有意義的、想象的、虛無(wú)飄渺的,但他還是把10分成了兩部分,并使它們的乘積等于40.給出“虛數(shù)”這一名稱的是法國(guó)數(shù)學(xué)家笛卡爾(1596—1650),他在《幾何學(xué)》(1637年發(fā)表)中使“虛的數(shù)'‘與”實(shí)的數(shù)“相對(duì)應(yīng),從此,虛數(shù)才流傳開(kāi)來(lái)。

  數(shù)系中發(fā)現(xiàn)一顆新星──虛數(shù),于是引起了數(shù)學(xué)界的一片困惑,很多大數(shù)學(xué)家都不承認(rèn)虛數(shù)。德國(guó)數(shù)學(xué)家菜不尼茨(1664—1716)在1702年說(shuō):“虛數(shù)是神靈遁跡的精微而奇異的隱避所,它大概是存在和虛妄兩界中的兩棲物”。瑞士數(shù)學(xué)大師歐拉(1707—1783)說(shuō):“一切形如,習(xí)的數(shù)學(xué)武子都是不可能有的,想象的數(shù),因?yàn)樗鼈兯硎镜氖秦?fù)數(shù)的平方根。對(duì)于這類數(shù),我們只能斷言,它們既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它們純屬虛幻。”然而,真理性的東西一定可以經(jīng)得住時(shí)間和空間的考驗(yàn),最終占有自己的一席之地。法國(guó)數(shù)學(xué)家達(dá)蘭貝爾(1717—1783)在1747年指出,如果按照多項(xiàng)式的四則運(yùn)算規(guī)則對(duì)虛數(shù)進(jìn)行運(yùn)算,那么它的結(jié)果總是的形式(a、b都是實(shí)數(shù))(說(shuō)明:現(xiàn)行教科書(shū)中沒(méi)有使用記號(hào)=-i,而使用=一1)。法國(guó)數(shù)學(xué)家棣莫佛(1667—1754)在1730年發(fā)現(xiàn)公式了,這就是著名的探莫佛定理。歐拉在1748年發(fā)現(xiàn)了有名的關(guān)系式,并且是他在《微分公式》(1777年)一文中第一次用i來(lái)表示一1的平方根,首創(chuàng)了用符號(hào)i作為虛數(shù)的單位。“虛數(shù)”實(shí)際上不是想象出來(lái)的,而它是確實(shí)存在的。挪威的測(cè)量學(xué)家成塞爾(1745—1818)在1779年試圖給于這種虛數(shù)以直觀的幾何解釋,并首先發(fā)表其作法,然而沒(méi)有得到學(xué)術(shù)界的重視。

  德國(guó)數(shù)學(xué)家高斯(1777—1855)在1806年公布了虛數(shù)的圖象表示法,即所有實(shí)數(shù)能用一條數(shù)軸表示,同樣,虛數(shù)也能用一個(gè)平面上的點(diǎn)來(lái)表示。在直角坐標(biāo)系中,橫軸上取對(duì)應(yīng)實(shí)數(shù)a的點(diǎn)A,縱軸上取對(duì)應(yīng)實(shí)數(shù)b的點(diǎn)B,并過(guò)這兩點(diǎn)引平行于坐標(biāo)軸的直線,它們的交點(diǎn)C就表示復(fù)數(shù)a+bi.象這樣,由各點(diǎn)都對(duì)應(yīng)復(fù)數(shù)的平面叫做“復(fù)平面”,后來(lái)又稱“高斯平面”。高斯在1831年,用實(shí)數(shù)組(a,b)代表復(fù)數(shù)a+bi,并建立了復(fù)數(shù)的某些運(yùn)算,使得復(fù)數(shù)的某些運(yùn)算也象實(shí)數(shù)一樣地“代數(shù)化”。他又在1832年第一次提出了“復(fù)數(shù)”這個(gè)名詞,還將表示平面上同一點(diǎn)的兩種不同方法──直角坐標(biāo)法和極坐標(biāo)法加以綜合。統(tǒng)一于表示同一復(fù)數(shù)的代數(shù)式和三角式兩種形式中,并把數(shù)軸上的點(diǎn)與實(shí)數(shù)—一對(duì)應(yīng),擴(kuò)展為平面上的點(diǎn)與復(fù)數(shù)—一對(duì)應(yīng)。高斯不僅把復(fù)數(shù)看作平面上的點(diǎn),而且還看作是一種向量,并利用復(fù)數(shù)與向量之間—一對(duì)應(yīng)的關(guān)系,闡述了復(fù)數(shù)的幾何加法與乘法。至此,復(fù)數(shù)理論才比較完整和系統(tǒng)地建立起來(lái)了。

  經(jīng)過(guò)許多數(shù)學(xué)家長(zhǎng)期不懈的努力,深刻探討并發(fā)展了復(fù)數(shù)理論,才使得在數(shù)學(xué)領(lǐng)域游蕩了200年的幽靈──虛數(shù)揭去了神秘的面紗,顯現(xiàn)出它的本來(lái)面目,原來(lái)虛數(shù)不虛呵。虛數(shù)成為了數(shù)系大家庭中一員,從而實(shí)數(shù)集才擴(kuò)充到了復(fù)數(shù)集。

  隨著科學(xué)和技術(shù)的進(jìn)步,復(fù)數(shù)理論已越來(lái)越顯出它的重要性,它不但對(duì)于數(shù)學(xué)本身的發(fā)展有著極其重要的意義,而且為證明機(jī)翼上升力的基本定理起到了重要作用,并在解決堤壩滲水的問(wèn)題中顯示了它的威力,也為建立巨大水電站提供了重要的理論依據(jù)。

 

 相關(guān)推薦:


  高考語(yǔ)文知識(shí)點(diǎn)匯總

 

最新高考資訊、高考政策、考前準(zhǔn)備、志愿填報(bào)、錄取分?jǐn)?shù)線等

高考時(shí)間線的全部重要節(jié)點(diǎn)

盡在"高考網(wǎng)"微信公眾號(hào)

收藏

高考院校庫(kù)(挑大學(xué)·選專業(yè),一步到位!)

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢

京ICP備10033062號(hào)-2 北京市公安局海淀分局備案編號(hào):1101081950

違法和不良信息舉報(bào)電話:010-56762110     舉報(bào)郵箱:wzjubao@tal.com

高考網(wǎng)版權(quán)所有 Copyright © 2005-2022 m.revolutshibainupartnership.com . All Rights Reserved