Image Modal
全國

熱門城市 | 全國 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關注高考網(wǎng)公眾號

    (www_gaokao_com)
    了解更多高考資訊

您現(xiàn)在的位置:首頁 > 高考總復習 > 高考知識點 > 高考數(shù)學知識點 > 高中數(shù)學線性規(guī)劃知識點及典型例題詳解

高中數(shù)學線性規(guī)劃知識點及典型例題詳解

來源:網(wǎng)絡整理 2020-02-26 16:28:46

一、知識梳理

1目標函數(shù):P=2x+y是一個含有兩個變量x和y的函數(shù),稱為目標函數(shù)。

2 可行域:約束條件表示的平面區(qū)域稱為可行域。

3 整點:坐標為整數(shù)的點叫做整點。

4 線性規(guī)劃問題:求線性目標函數(shù)在線性約束條件下的最大值或最小值的問題,通常稱為線性規(guī)劃問題。只含有兩個變量的簡單線性規(guī)劃問題可用圖解法來解決。

5整數(shù)線性規(guī)劃:要求量整數(shù)的線性規(guī)劃稱為整數(shù)線性規(guī)劃。

二、疑難知識導析

線性規(guī)劃是一門研究如何使用最少的人力、物力和財力去最優(yōu)地完成科學研究、工業(yè)設計、經(jīng)濟管理中實際問題的專門學科,主要在以下兩類問題中得到應用:一是在人力、物力、財務等資源一定和條件下,如何使用它們來完成最多的任務;二是給一項任務,如何合理安排和規(guī)劃,能以最少的人力、物力、資金等資源來完成該項任務。

1對于不含邊界的區(qū)域,要將邊界畫成虛線。

2 確定二元一次不等式所表示的平面區(qū)域有種方法,常用的一種方法是“選點法”:任選一個不在直線上的點,檢驗它的坐標是否滿足所給的不等式,若適合,則該點所在的一側即為不等式所表示的平面區(qū)域;否則,直線的另一端為所求的平面區(qū)域。若直線不過原點,通常選擇原點代入檢驗。

3 平移直線y=-kx+P時,直線必須經(jīng)過可行域。

4 對于有實際背景的線性規(guī)劃問題,可行域通常是位于第一象限內(nèi)的一個凸多邊形區(qū)域,此時變動直線的最佳位置一般通過這個凸多邊形的頂點。

5 簡單線性規(guī)劃問題就是求線性目標函數(shù)在線性約束條件下的最優(yōu)解,無論此類題目是以什么實際問題提出,其求解的格式與步驟是不變的:

(1)尋找線性約束條件,線性目標函數(shù);

(2)由二元一次不等于表示的平面區(qū)域做出可行域;

(3)在可行域內(nèi)求目標函數(shù)的最優(yōu)解。

積儲知識:

一、

1.占P(x0,y0)在直線Ax+By+C=0上,則點P坐標適合方程,即Ax0+ y0+C=0

2.點P(x0,y0)在直線Ax+By+C=0上方(左上或右下),則當B>0時,Ax0+ y0+C >0;當B<0時,Ax0+ y0+C<0

3.點P(x0+,y0)D在直線Ax0+ y0+C=0下方(左下或右下),當B>0時,Ax0+ y0+C<0;當B>0時,Ax0+ y0+C>0

注意:(1)在直線Ax+ By+C=0同一側的所有點,把它的坐標(x,y)代入Ax+ By+C=0,所得實數(shù)的符號都相同。

(2)在直線Ax+ By+C=0的兩側的兩點,把它的坐標代入Ax+ By+C,所得實數(shù)的符號相反。

即:

1.點(P x1,y1)和Q(x2,y2)在直線Ax+By+C=0的同側,則有(Ax1+By1+C)(Ax2+By2+C)>0

2. 點(P x1,y1)和Q(x2,y2)在直線Ax+By+C=0的同側,則有(Ax1+By1+C)(Ax2+By2+C)<0

二、二元一次不等式表示平面區(qū)域:

①二元一次不等式Ax+By+C>0(或<)在平面直角坐標系中表示直線Ax+By+C=0某一側所有點組成的平面區(qū)域,不包括邊界;

②二元一次不等式Ax+By+C≥0(≤0)在平面直角坐標系中表示直線Ax+By+C0

某一側所有點組成的平面區(qū)域且包括邊界;

注意:作圖時,不包括邊界畫成虛線;包括邊界畫成實線。

三、判斷二元一次不等式表示哪一側平面區(qū)域的方法:

方法一:取特殊點檢驗:“直線定界、特殊點定域”

原因:由于對在直線Ax+By+C0的同一側的所有點(x,y)把它的坐標系(x,y)代入Ax+By+C,所得到的實數(shù)的符號都相同,所以只需在此直線的某一側取一個特殊點(x0,y0),從Ax0+By0+C的正負即可判Ax+By+C>0表示直線哪一側的平面區(qū)域。特殊地,當C≠0時,常把原點作為特殊點,當C=0時,可用(0,1)或(1,0)當特殊點,若點坐標代入適合不等式則此點所在的區(qū)域為需畫的區(qū)域,否則是另一側區(qū)域為需畫區(qū)域。

方法二:利用規(guī)律:

1.Ax+By+C>0,當B>0時表示直線Ax+By+C=0上方(左上或右上),當B<0時表示直線Ax+By+C=0下方(左下或右下);

2.Ax+By+C<0,當B>0時表示直線Ax+By+C=0下方(左下或右下)當B>0時表示直線Ax+By+C=0上方(左上或右上)。

四、線性規(guī)劃的有關概念:

①線性約束條件:

②線性目標函數(shù):

③線性規(guī)劃問題:

④可行解、可行域和最優(yōu)解:

典型例題

典型例題——————畫區(qū)域

高中數(shù)學線性規(guī)劃知識點及典型例題詳解1高中數(shù)學線性規(guī)劃知識點及典型例題詳解2高中數(shù)學線性規(guī)劃知識點及典型例題詳解3高中數(shù)學線性規(guī)劃知識點及典型例題詳解4高中數(shù)學線性規(guī)劃知識點及典型例題詳解5

 

收藏

高考院校庫(挑大學·選專業(yè),一步到位。

高校分數(shù)線

專業(yè)分數(shù)線

京ICP備10033062號-2 北京市公安局海淀分局備案編號:1101081950

違法和不良信息舉報電話:010-56762110     舉報郵箱:wzjubao@tal.com

高考網(wǎng)版權所有 Copyright © 2005-2022 m.revolutshibainupartnership.com . All Rights Reserved