全國(guó)

熱門城市 | 全國(guó) 北京 上海 廣東

華北地區(qū) | 北京 天津 河北 山西 內(nèi)蒙古

東北地區(qū) | 遼寧 吉林 黑龍江

華東地區(qū) | 上海 江蘇 浙江 安徽 福建 江西 山東

華中地區(qū) | 河南 湖北 湖南

西南地區(qū) | 重慶 四川 貴州 云南 西藏

西北地區(qū) | 陜西 甘肅 青海 寧夏 新疆

華南地區(qū) | 廣東 廣西 海南

  • 微 信
    高考

    關(guān)注高考網(wǎng)公眾號(hào)

    (www_gaokao_com)
    了解更多高考資訊

首頁(yè) > 高考總復(fù)習(xí) > 高考數(shù)學(xué)復(fù)習(xí)方法 > 高中數(shù)學(xué)學(xué)習(xí)指導(dǎo):數(shù)學(xué)歸納法

高中數(shù)學(xué)學(xué)習(xí)指導(dǎo):數(shù)學(xué)歸納法

2019-04-02 19:27:52本站原創(chuàng)

  數(shù)學(xué)歸納是一種有特殊事例導(dǎo)出一般原理的思維方法。歸納推理分完全歸納推理與不完全歸納推理兩種。不完全歸納推理只根據(jù)一類事物中的部分對(duì)象具有的共同性質(zhì),推斷該類事物全體都具有的性質(zhì),這種推理方法,在數(shù)學(xué)推理論證中是不允許的。完全歸納推理是在考察了一類事物的全部對(duì)象后歸納得出結(jié)論來(lái)。

  數(shù)學(xué)歸納法是用來(lái)證明某些與自然數(shù)有關(guān)的數(shù)學(xué)命題的一種推理方法,在解數(shù)學(xué)題中有著廣泛的應(yīng)用。它是一個(gè)遞推的數(shù)學(xué)論證方法,論證的第一步是證明命題在n=1(或n)時(shí)成立,這是遞推的基礎(chǔ),第二步是假設(shè)在n=k時(shí)命題成立,再證明n=k+1時(shí)命題也成立,這是無(wú)限遞推下去的理論依據(jù),它判斷命題的正確性能否由特殊推廣到一般,實(shí)際上它使命題的正確性突破了有限,達(dá)到無(wú)限。這兩個(gè)步驟密切相關(guān),缺一不可,完成了這兩步,就可以斷定“對(duì)任何自然數(shù)(或n≥n且n∈N)結(jié)論都正確”。由這兩步可以看出,數(shù)學(xué)歸納法是由遞推實(shí)現(xiàn)歸納的,屬于完全歸納。

  運(yùn)用數(shù)學(xué)歸納法證明問(wèn)題時(shí),關(guān)鍵是n=k+1時(shí)命題成立的推證,此步證明要具有目標(biāo)意識(shí),注意與最終要達(dá)到的解題目標(biāo)進(jìn)行分析比較,以此確定和調(diào)控解題的方向,使差異逐步減小,最終實(shí)現(xiàn)目標(biāo)完成解題。

  運(yùn)用數(shù)學(xué)歸納法,可以證明下列問(wèn)題:與自然數(shù)n有關(guān)的恒等式、代數(shù)不等式、三角不等式、數(shù)列問(wèn)題、幾何問(wèn)題、整除性問(wèn)題等等。

  常見數(shù)學(xué)歸納法及其證明方法(一)第一數(shù)學(xué)歸納法

  一般地,證明一個(gè)與正整數(shù)n有關(guān)的命題,有如下步驟

  (1)證明當(dāng)n取第一個(gè)值時(shí)命題成立,對(duì)于一般數(shù)列取值為1,但也有特殊情況,

  (2)假設(shè)當(dāng)n=k(k≥[n的第一個(gè)值],k為自然數(shù))時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立。

  (二)第二數(shù)學(xué)歸納法

  對(duì)于某個(gè)與自然數(shù)有關(guān)的命題,

  (1)驗(yàn)證n=n0時(shí)P(n)成立,

  (2)假設(shè)no<n<k時(shí)P(n)成立,并在此基礎(chǔ)上,推出P(k+1)成立。

  綜合(1)(2)對(duì)一切自然數(shù)n(>n0),命題P(n)都成立,

  (三)螺旋式數(shù)學(xué)歸納法

  P(n),Q(n)為兩個(gè)與自然數(shù)有關(guān)的命題,

  假如(1)P(n0)成立,

  (2)假設(shè)P(k)(k>n0)成立,能推出Q(k)成立,假設(shè)Q(k)成立,能推出P(k+1)成立,綜合(1)(2),對(duì)于一切自然數(shù)n(>n0),P(n),Q(n)都成立,

  (四)倒推數(shù)學(xué)歸納法(又名反向數(shù)學(xué)歸納法)

  (1)對(duì)于無(wú)窮多個(gè)自然數(shù)命題P(n)成立,

  (2)假設(shè)P(k+1)成立,并在此基礎(chǔ)上推出P(k)成立,

  綜合(1)(2),對(duì)一切自然數(shù)n(>n0),命題P(n)都成立,

  總而言之:歸納法是由一系列有限的特殊事例得出一般結(jié)論的推理方法。歸納法分為完全歸納法和不完全歸納法完全歸納法:數(shù)學(xué)歸納法就是一種不完全歸納法,在數(shù)學(xué)中有著重要的地位!

[標(biāo)簽:高考資訊 復(fù)習(xí)指導(dǎo)]

分享:

高考院校庫(kù)(挑大學(xué)·選專業(yè),一步到位。

高考院校庫(kù)(挑大學(xué)·選專業(yè),一步到位。

高校分?jǐn)?shù)線

專業(yè)分?jǐn)?shù)線

日期查詢
  • 歡迎掃描二維碼
    關(guān)注高考網(wǎng)微信
    ID:gaokao_com

  • 👇掃描免費(fèi)領(lǐng)
    近十年高考真題匯總
    備考、選科和專業(yè)解讀
    關(guān)注高考網(wǎng)官方服務(wù)號(hào)